
4 Testing

4.1 Unit Testing
Frontend:

● We will unit test our React frontend using Jest (it is already built into React) and possibly
mocha or ava. These are recommended by the React framework for unit testing.

● Every feature that we add should be unit tested for each of its functionalities. For
example:

○ Page switching
○ User submissions
○ User login
○ Error outputs

Backend:

● We will be using Mockito to mock objects as part of automated unit tests.
○ Mocking objects created through mockito such as getAccountID to test the

functionality of the controller and repository methods.
● We will also test the service part of our unit testing.

4.2 Interface Testing
We will be using Postman for simulating the connection between backend and frontend.

This is critical to make sure that speedy development continues while both front and backend
are being built initially. Along with that, JMeter and SoapUI are two other tools that have the
ability to test API and other interfaces. If we need more tools for testing the interfaces, these two
may help us out in the future.

When testing the combination of multiple interfaces, error handling and mockito will be
very important. These will allow us to see many of the problems that arise while connecting the
interfaces together. Debugging becomes much easier if well made mockito tests are used.

4.3 Integration Testing
Frontend to backend. Round-trip testing.

● Round-trip testing is easy to tell if it is working, as we will have error handling that will
catch anything that goes wrong.

○ For example, if there is a wrong email address, there will be an error returned.
Or, if the frontend cannot get information from the database, there will be an error
as well.

○ Another example would be any CRUD features that we implement.
● The IDE debugger will be used a lot during the testing phase so that we can see exactly

where there are issues from the connection.
● This step is critical as if there are problems getting information from the backend, the

frontend cannot continue making features for the project.

Frontend:

● We will use interface testing for the frontend so that we can mock fake users to sign into
that do not directly come from the database. This way, if there are any problems with the
round-trip testing, the frontend can still develop features without losing too much time.

● This step is critical since each page needs to be working correctly and displaying the
given information, so having a mock user will speed up the process significantly.

Backend:

● For the integration testing, we will be testing our Spring Boot Application.
○ For instance, we will need to create an account database for the login information

of the user. In the account database, we will be testing the user type which
includes the id, email, phone, name, and role.

● Part of the testing we will need to do is making sure the entities and tables that we
intended to have relationships actually do and they work as intended.

● The tools we will be using are Spring Boot Test and JUnit testing

4.4 System Testing
Puppeteer, Cypress, and PlayWright are all tools that React recommends for automated

end-to-end testing of applications. Because they are recommended, and come from reliable
developers, we will be utilizing at least one of these applications to finalize our testing process
once the application is complete.

We will also be utilizing manual testing with volunteers in order to get responses that a
computer will not be able to give. Such as how the flow of the program feels or whether the
program looks good or not. These are very important criticisms that will help give us a more
polished, and good looking program overall.

4.5 Regression Testing
Part of our requirements for merging branches with new features is that they will need to

pass all prior unit tests developed. This can be achieved using CI/CD on GitLab. Along with that,
as stated in a previous document, we will be merging all changes into a develop branch before
merging the final changes into master. This way, the master branch will always be working and
we won’t need to back track our progress if an unexpected error occurs. In particular, we need
to test the security of our system and the accuracy of data being stored.

4.6 Acceptance Testing
We plan to work closely with our client to ensure that both functional and non-functional

requirements are being met. We will verify our testing with our client on a regular basis to
ensure that our testing meets our client’s standards. We will also regularly perform regression
testing after making significant changes to HandRaise to ensure it does not lose any desired
functionality.

We will also check with our client to see if he has any additional requirements or
recommendations, and include these in our testing as well.

4.7 Security Testing (if applicable)
Security testing will be a large part of our project, since students will be logging into the

program using their netid and password. We will write algorithms to break our encryption
algorithm and ensure that no essential data is viewable to users.

We will also plan to use fuzzing with our testing to ensure that unexpected inputs,
whether to the login page or otherwise, do not compromise the security of the system.

We will also implement JUnit tests for our Spring Boot application that make sure users
can only hit the API endpoints they are authenticated for and they don’t have access to data
they shouldn’t.

4.8 Results
The results of our testing will be a stable and secure application that fills the

requirements of our client. We have multiple developers working on this project and need to
maintain regressive tests to make sure that new features do not break old ones. This can be
done through our unit, integration, and end-to-end tests. Software industry standards
recommend at least 70% code coverage so we believe if we reach this number or beyond, we
will have a stable application. Frequent acceptance testing will ensure that when we develop
new functionality, it will be serving the client’s needs for the application. Finally, we will include
security testing to make sure that unforeseen events or bad actors cannot hurt our application or
its users. Overall, all of the testing types and categories that we have outlined in this document
will ensure that our application will fulfil our client’s and user’s needs, as well as provide a
smooth experience.

